If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+14t+240
We move all terms to the left:
0-(-16t^2+14t+240)=0
We add all the numbers together, and all the variables
-(-16t^2+14t+240)=0
We get rid of parentheses
16t^2-14t-240=0
a = 16; b = -14; c = -240;
Δ = b2-4ac
Δ = -142-4·16·(-240)
Δ = 15556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15556}=\sqrt{4*3889}=\sqrt{4}*\sqrt{3889}=2\sqrt{3889}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{3889}}{2*16}=\frac{14-2\sqrt{3889}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{3889}}{2*16}=\frac{14+2\sqrt{3889}}{32} $
| 20=7x-3x | | Y=3x/2+5 | | -4a-8=-a-8 | | 15-2=-7x | | 3x-1=95-5x | | m^2-32m=0 | | 4x+x=364 | | 12n=-240 | | 10−2w=6 | | 10y+4=4 | | 46-u=244 | | 7-v=248 | | X^3+9x-16=0 | | -24=-21-15x | | 3/7t=21 | | 8x-8(x+1)=10 | | 1/6y-8=4 | | -2v+3=7 | | -7(5x+10)=280 | | 1/2y+6=2 | | 1/2y-4=3/2 | | A=3.14R^2-3.14r^2 | | 1/2y-7=7 | | 59x+24=70 | | 8(s+2)=80 | | 1/5y+4=9 | | 2(3u+80=70 | | −x−3=2x−6 | | -52=-6x+x+8 | | t/7-81=-75 | | 100-7(3x-4)+10x=0 | | 15=21-3c |